CONFORMATION AND ABSOLUTE CONFIGURATION OF NATURALLY OCCURRING PARVIFOLINE AND SEVERAL SYNTHETIC DERIVATIVES

Pedro Joseph-Nathan,* María del R. Hernández-Medel, Elsa Martínez, Mirna Rojas-Gardida, and Carlos M. Cerda
Departamento de Quimica del Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Apartado 14-740, México, DF, 07000 México

Abstract

Chemical transformation of parvifoline [1] to curcuquinone [15] established the absolute configuration of $\mathbf{1}$ as the R enantiomer. The solution conformation of four parvifoline derivatives containing eight-membered rings [$\mathbf{2}, 5,8$, and 9$]$ generated during this transformation is obtained from the vicinal coupling constants provided by their ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectra. The eight-membered ring of $\mathbf{2}$ exists as a distorted $t w i s t-$ boat, that of 5 as a twist-boat, and that of $\mathbf{8}$ in a twist-boat-chair conformation. In 9 the ring exists in a conformation midway between boat and twist-boar. The conformation in the solid state of these compounds, obtained by X-ray diffraction analyses, is essentially the same as that found in solution. Furthermore, ${ }^{13} \mathrm{C}$-nmr data of seven parvifoline and five curcuquinone derivatives are reported.

Parvifoline [1] (Scheme 1) is a bicyclic sesquiterpene found as a constituent of Coreopsis parvifolia (1), Perezia carpbolepis (2), and Perezia alamani var. oolepis (3). Its structure was deduced from spectral data and chemical transformations, but no conclusive evidence about its absolute configuration was described (1). The present paper reports the chemical transformation of this benzocyclooctene 1 to curcuquinone [15] (4). Because the absolute configuration of $\mathbf{1 5}$ is known (4), this correlation establishes the absolute configuration of parvifoline and of its derivatives. In addition, the conformation of the eight-membered ring of four parvifoline derivatives $(\mathbf{2}, 5,8$, and 9$)$ generated in this transformation, in solution and in the solid state, is described.

RESULTS AND DISCUSSION

Absolute configuration.-Chemical transformation of parvifoline [1] to curcuquinone [15] was carried out by means of the reaction sequence represented in Scheme 1. Treatment of the hexane extracts of the roots of P. alamani var. oolepis (3) with benzoyl chloride/pyridine gave parvifoline benzoate $\{\mathbf{2}\}$ in good yields. This procedure provided appropriate amounts of starting material 2 for the correlation. Comparison between 2 and 15 (Scheme 1) shows that cleavage of the C-3 to C-14 bond of 2 could lead to a sesquiterpene with a structure closely related to curcuquinone [15]. Thus, to correlate these two substances, the following reaction sequence involving such a cleavage was attempted. Isomerization of the double bond of 2 was achieved with $\mathrm{HOAc} / \mathrm{ZnCl}_{2}$ to yield isoparvifoline benzoate [5]. Epoxidation of 5 with m-chloroperbenzoic acid afforded 7. Rearrangement of the epoxide 7 with $\mathrm{Et}_{2} \mathrm{O} / \mathrm{BF}_{3}$ (5) yielded, after alkaline hydrolysis of the benzoate group, 14-oxodihydroparvifoline [9]. Treatment of the ketone 9 under Baeyer-Villiger conditions (6) would lead to a lactone with an oxygen atom attached to the aromatic ring. However, the last reaction was unsuccessful. An alternative procedure involving cleavage of the C-13 to C-14 bond was achieved starting with epoxide 7. Periodic acid oxidation (7) of compound 7 gave the ketone-aldehyde 10 , which was converted to the p-benzoquinone 12 by alkaline hydrolysis with $\mathrm{KOH} / \mathrm{MeOH}$, followed by an oxidative decarbonylation with $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{MeOH} /$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ (8). Treatment of quinone 12 with $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{Zn}$ protected the carbonyl groups as the hydroquinone diester. Introduction of a methyl group at $\mathrm{C}-13$ by means of MeMgI with concomitant removal of the acetates, followed by oxidation of the reaction product with FeCl_{3}, afforded compound 14. Finally, dehydration of the tertiary hydroxyl group

SCheme 1. Reaction sequence for the transformation of parvifoline [1] to curcuquinone [15].
of 14 with silica gel / p-toluenesulfonic acid (9) yielded curcuquinone $[15]$, identical to the natural product in all respects (4). Curcuquinone [15] obtained from parvifoline [1] showed $[\alpha] \mathrm{D}=-1.58^{\circ}$, a value very similar to that reported for the natural product, $[\alpha] D=-1.3^{\circ}(4)$. Inasmuch as the absolute configuration of the natural curcuquinone is $R(4)$, it follows that parvifoline has the same absolute configuration.

Structures for the compounds obtained during this transformation were established from their nmr spectra. ${ }^{1} \mathrm{H}$-nmr data are reported in the Experimental section and ${ }^{13} \mathrm{C}$ nmr data of parvifoline and curcuquinone derivatives are summarized in Tables 1 and 2, respectively. The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ assignments were achieved by comparison with previously reported data of related molecules $(1,10)$ and from information provided by their ${ }^{1} \mathrm{H}$ coupled ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra.

Table 1. ${ }^{13} \mathrm{C}$-nmr Chemical Shifts of Parvifoline Derivatives. ${ }^{2}$

Carbon	Compound						
	2	3	5	6	7	8	9
1	117.8 (d)	117.5 (d)	117.8 (d)	117.5 (d)	117.5 (d)	117.5 (d)	113.2 (d)
2	144.2(s)	144.6 (s)	143.0 (s)	143.3 (s)	144.4(s)	145.0(s)	143.8 (s)
3	136.3 (s)	137.0(s)	140.5 (s)	141.0 (s)	132.7 (s)	133.5 (s)	131.5 (s)
4	131.9(d)	132.1 (d)	130.6(d)	130.8 (d)	131.0 (d)	131.4 (d)	131.0 (d)
5	126.8 (s)	126.5 (s)	126.3 (s)	126.0 (s)	127.6(s)	127.5 (s)	121.8 (s)
6	148.9(s)	148.5 (s)	148.4 (s)	148.0 (s)	149.4(s)	149.3 (s)	157.3(s)
7	15.7 (q)	15.7 (q)	15.6 (q)	15.6 (q)	15.7 (g)	15.7 (q)	15.3 (q)
8	33.3 (d)	33.4 (d)	33.4 (d)	33.5 (d)	34.3 (d)	34.4 (d)	36.1 (d)
9	19.3 (q)	19.4 (q)	21.2 (q)	21.2 (q)	22.0 (q)	22.0 (q)	22.9 (q)
10	40.0(t)	40.0 (t)	39.2 (t)	39.2 (t)	$40.7(\mathrm{t})$	40.8 (t)	35.7 (t)
11	23.9 (t)	23.9 (t)	22.3 (t)	22.2 (t)	24.0 (t)	24.0 (t)	23.5 (t)
12	123.7 (d)	123.7 (d)	35.4 (t)	35.4 (t)	33.0 (t)	33.1 (t)	32.4 (t)
13	137.3(s)	137.3(s)	135.6(s)	136.1 (s)	61.9 (s)	62.0(s)	46.4 (d)
14	$41.9(\mathrm{t})$	41.9 (t)	122.3 (d)	122.0 (d)	63.0(d)	63.0 (d)	210.4 (s)
15	26.3 (q)	26.3 (q)	26.2 (q)	26.2 (q)	22.1 (q)	22.1 (q)	17.0 (q)
CO	164.8 (s)	163.1 (s)	164.6(s)	162.9 (s)	164.8 (s)	162.9(s)	-
1^{\prime}	129.9(s)	135.1(s)	129.6(s)	134.9 (s)	129.3 (s)	134.9(s)	-
$2^{\prime}, 6^{\prime}$	130.1 (d)	131.2 (d)	129.9 (d)	131.0 (d)	129.9 (d)	131.2 (d)	-
$3^{\prime}, 5^{\prime}$	128.5 (d)	123.7 (d)	128.4 (d)	123.5 (d)	128.4 (d)	123.7 (d)	-
$4{ }^{\prime}$	133.4 (d)	150.9(s)	133.2 (d)	150.6(s)	133.3 (d)	150.9(s)	-

${ }^{\text {a }}$ In ppm from internal TMS. Benzoate group carbon numbering is according to the following figure:

CONFORMATION.-The conformations in solution were deduced from information extracted from the $300 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{nmr}$ spectra of derivatives $2,5,8$, and 9 . Compound $\mathbf{8}$ was obrained in the same way as 7 , but using p-nitrobenzoyl chloride instead of benzoyl chloride when treating the P. alamani extracts. The signals of the protons of the eight-membered ring of the four compounds were assigned with the aid of homonuclear spin-spin decoupling experiments. Furthermore, because the ${ }^{13} \mathrm{C}$-nmr spectra of these derivatives were fully assigned (Table 1), their two-dimensional ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ heteronuclear chemical shift correlation diagrams (see Experimental) confirmed the hydrogen assignments. Vicinal proton coupling constants of the (C-8)-(C-10)-(C-11)-(C-12)-(C-13) fragment of 9 and of the ($\mathrm{C}-8)-(\mathrm{C}-10)-(\mathrm{C}-11)-(\mathrm{C}-12)$ fragment of 2,5 , and $\mathbf{8}$ gave the conformational information. Estimations of the H-C-C-H dihedral angles were achieved (Table 3) by means of a generalized Karplus-type relationship (11). Although individual assignments of the methylene group signals of the four compounds were initially not known and application of the Karplus-type relationship (11) provided several dihedral angle values for each H-C-C-H fragment, observation of Dreiding models showed that only one was consistent with the eight-membered ring geometry and also with the dihedral angle values found for the other H-C-C-H fragments of the same molecule. This fact established the conformation and enabled individual ${ }^{1} \mathrm{H}-\mathrm{nmr}$ assignments of the methylene protons. Vicinal coupling constants and their corresponding calculated dihedral angles are given in Table 3, while approximate projections of the Dreiding models of $\mathbf{2}, 5,8$, and 9 are drawn in Figures 1 to 4 , respectively. According to published conformations for 1,3 - and 1,4 -cyclooctadiene $(12,13)$ and for 1,3 -

Table 2. ${ }^{13} \mathrm{C}$-nmr Chemical Shifts of Curcuquinone Derivatives. ${ }^{2}$

Carbon	Compound				
	10	11	12	13	14
1	131.3(s)	125.9(s)	186.9(s)	145.7 (s)	187.5 (s)
2	149.4 (s)	150.7 (s)	153.3(s)	137.4 (s)	154.2 (s)
3	120.5 (d)	112.8 (d)	131.0 (d)	120.4 (d)	131.2 (d)
4	154.0(s)	160.7 (s)	187.9(s)	147.3 (s)	188.5 (s)
5	128.4 (s)	122.7 (s)	144.9(s)	128.6(s)	145.2 (s)
6	134.9(d)	136.0 (d)	133.5 (d)	124.6 (d)	133.8(d)
7	15.7 (q)	15.3 (q)	15.2 (q)	15.8 (q)	15.3 (q)
8	32.2 (d)	32.1 (d)	31.3 (d)	32.6 (d)	31.5 (d)
9	21.7 (q)	21.9 (q)	19.2 (q)	21.1 (q)	19.4 (q)
10	37.4 (t)	37.2 (t)	35.0 (t)	36.6(t)	36.4 (t)
11	21.7 (t)	21.7 (t)	21.3 (t)	21.9 (t)	22.3 (t)
12	43.3 (t)	43.5 (t)	43.1 (t)	43.5 (t)	43.7 (t)
13	208.1 (s)	210.6 (s)	208.0 (s)	208.7 (s)	70.9 (s)
14	29.6 (q)	29.9 (q)	29.8 (q)	29.7 (q)	29.4 (q)
15	-	-	-	-	29.2 (q)
CHO	191.0 (d)	191.5 (d)	-	-	-
CO	163.9 (s)	-	-	-	-
1^{\prime}	128.8 (s)	-	-	-	-
$2^{\prime}, 6^{\prime}$	130.0 (d)	-	-	-	-
$3^{\prime}, 5^{\prime}$	128.6(d)	-	-	-	-
4^{\prime}	133.7 (d)	-	-	-	-
$\mathrm{MeCO}(\mathrm{C}-1)$.	-	-	-	169.5 (s) ${ }^{\text {b }}$	-
$\mathrm{CH}_{3} \mathrm{CO}(\mathrm{C}-1)$	-	-	-	$20.8(\mathrm{q})^{\text {b }}$	-
$\mathrm{MeCO}(\mathrm{C}-4)$	-	-	-	$168.9(\mathrm{~s})^{\text {b }}$	-
$\mathrm{CH}_{3} \mathrm{CO}(\mathrm{C}-4)$	-	-	-	20.7 (q) ${ }^{\text {b }}$	-

[^0]cycloctadiene mono-epoxide (12), the eight-membered ring of 2 appears as a distorted twist-boat, that of $\mathbf{5}$ as a twist-boat, and that of $\mathbf{8}$ as a twist-boat-chair. The eightmembered ring of compound 9 exists in a conformation midway between boat and twist-boat, in analogy with conformational nomenclature for cis-cyclooctene (14). Further evidence to support the conformation of 9 was obtained when an nOe between H-8 and H-13 (11\%) was observed.

The X-ray diffraction analyses of compounds $\mathbf{2 , 5 , 8}$, and 9 allowed comparison between the conformation in the solid state and in solution. The results show (Table 3) that in each case the conformation is essentially the same in both states. In addition, $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ torsion angles for $\mathbf{2}$ and 5 (Table 4) reasonably correspond with those reported $(12,13)$ for the corresponding 1,4 - and 1,3 -cyclooctadiene conformations, respectively. Perspective views of the molecular structures of 2,5,8, and 9 are drawn in Figures 1 to 4 , respectively. The X -ray diffraction studies of 8 and 9 also provide the stereochemistry of the chiral centers located at C-13 and C-14 in 8 and at $\mathrm{C}-13$ in 9 .

The eight-membered ring conformations of parvifoline $[1]$ and of its acetate 4 were reported as boat-chair (1). However, a careful revision of the published ${ }^{1} \mathrm{H}$-nmr spectral interpretation reveals several inconsistencies of the coupling constants owing to the signals at $\delta 1.07(J=3.5,4.5,12.5$, and 12.5) [lit. (1): $\delta 1.10 ; J=4,10,10$, and 15 $\mathrm{Hz}]$ and at $\delta 1.54(J=3.5,3.5,8.0$, and 13.0 Hz) [lit. (1): $\delta 1.54 ; J=10$, not assigned, 8 , and 10 Hz] in the spectrum of 4 . The ${ }^{1} \mathrm{H}$-nmr spectrum of 4 shows essen-
Table 3. Eight-membered Ring Vicinal ${ }^{1} \mathrm{H}_{-}{ }^{1} \mathrm{H}$ Coupling Constants $[J(\mathrm{~Hz})]$, Calculated $\mathrm{H}_{\mathrm{x}}-\mathrm{C}-\mathrm{C}-\mathrm{H}_{\mathrm{y}}$ Dihedral Angles for the

"Estimated with the generalized Karplus-type relationship described in Haasnoot et al. (11) except $11 \alpha-12$ and $11 \beta-12$ values of com-
pound 2 which were estimated with the relationship $J=J_{0} \cos ^{2} \phi$ where $J_{0}=10.6$ for $0^{\circ} \leq \phi \leq 90^{\circ}$ and $J_{0}=11.4$ for $90^{\circ} \leq \phi \leq 180^{\circ}(17)$. ${ }^{6}$ Estimated standard deviations are shown in parentheses.
'Not assigned.
d Not calculated.

Figure 1. Molecular structure of parvifoline benzoate $[\mathbf{2}]$.

Figure 2. Molecular structure of isoparvifoline benzoate [5].

Figure 3. Molecular structure of 13,14 -epoxyisoparvifoline p-nitrobenzoate [8].
tially the same chemical shifts and coupling constants as the spectrum of $\mathbf{2}$. Thus, the eight-membered ring of $\mathbf{2}$ and $\mathbf{4}$ shows a distorted twist-boat conformation. The inconsistencies in the previously reported (1) coupling constants may be due to the use of oily, impure samples, instead of pure crystalline parvifoline $[\mathbf{1}]$ and its acetate $\mathbf{4}(2,3)$.

Figure 4. Molecular structure of 14-oxodihydroparvifoline [9].

Table 4. C-C-C-C Torsion Angles (degrees) of: Parvifoline Benzoate $\{2\}$, Isoparvifoline Benzoate [5], 13, 14-Epoxyisoparvifoline p-nitrobenzoate [8], and 14-Oxodihydroparvifoline [9]. ${ }^{2}$ For Comparative Purposes Torsion Angles of Distorted Twist-boat Conformation of cis, cis-1,4cyclooctadiene ${ }^{\text {b }}$ (DTB 1,4-) and Those of Twist-boat Conformation of cis, cis-1,3-cycloctadiene ${ }^{\text {c }}$ (TB 1,3-) Are Shown in Parentheses.

C-C-C-C	Compound					
	2	(DTB 1,4-)	5	(TB 1,3-)	8	9
2-3-14-13	-62.7 ± 0.5	(-38)	-45.7 ± 0.5	(-38)	-60.3 ± 0.7	-16.8 ± 0.4
3-14-13-12	3.3 ± 0.6	(-13)	-8.1 ± 0.6	(0)	-8.0 ± 1.0	-65.1 ± 0.4
14-13-12-11	2.8 ± 0.7	(-4)	0.2 ± 0.6	(-18)	88.0 ± 1.4	51.2 ± 0.4
13-12-11-10	74.7 ± 0.5	(88)	78.9 ± 0.4	(75)	-67.7 ± 1.9	57.5 ± 0.4
12-11-10-8	-58.5 ± 0.5	(-55)	$-55.4=0.4$	(-78)	39.5 ± 1.6	-65.0 ± 0.4
11-10-8-2	-51.0 ± 0.4	(-52)	-56.5 ± 0.4	(-32)	-79.4 ± 0.8	-42.8 ± 0.4
10-8-2-3	88.3 ± 0.4	(90)	88.0 ± 0.3	(80)	88.1 ± 0.6	73.2 ± 0.3
8-2-3-14	11.7 ± 0.5	(3)	5.1 ± 0.4	(0)	5.9 ± 0.7	8.9 ± 0.4

${ }^{4}$ From their X-ray diffraction analyses.
${ }^{6}$ From Anet and Yavari (13). Angle signs have been inverted.
${ }^{\text {'From Anet and Yavari (12). Angle signs have been inverted. }}$
Furthermore, the previous conformarional arguments (1) attributed a shielding effect to the benzene ring instead of to the double bond of parvifoline [1] as already noticed (15). It is also worth mentioning that the specific rotations of parvifoline and isoparvifoline derivatives $2,3,5$, and $\mathbf{6}$ are high, probably due to the presence of inherently dissymmetric chromophores (16).

EXPERIMENTAL

Cc was done using Merck Si gel 60 ($70-230$ mesh ASTM). Melting points, determined on a FisherJohns apparatus, are uncorrected. Ir spectra in CHCl_{3} were obtained on a Nicolet MX-1 spectrophotometer. Specific rotations in CHCl_{3} were determined on a Perkin-Elmer 241 polarimeter. Uv spectra were obtained on a Unicam SP-800 spectrophotometer. The nmr spectra were measured with TMS as the internal reference on Varian Associates EM-390, XL-100A-FT-16K, and XL-300GS spectrometers. Microanalyses were performed by the Alfred Bernhard Laboratories (West Germany). X-ray data collections ${ }^{1}$ were obtained on a Nicolet R 3 m four circle diffractometer equipped with $\mathrm{CuK} \alpha$ radiation ($\lambda=1.54178 \AA$). The diffractometer was operated in the $\boldsymbol{\theta}: 2 \theta$ scanning mode. Crystal data for compounds $\mathbf{2}, 5,8$, and 9 are summarized in Table 5, and their fractional atomic coordinates are given in Tables 6-9. The data measured were corrected for background, Lorentz, and polarization effects, while crystal decay and absorption were negligible. The structures were solved by direct methods using the software provided by the manufacturer. For the structural refinements the non-hydrogen atoms were treated anisotropically; the hydroxyl hydrogen of 9 became evident from a $\Delta \mathrm{F}$ synthesis, and the hydrogen atoms bonded to carbons, included in the structure factor calculation, were refined isotropically. A few reflections were excluded from the final refinement calculations to improve the fir.
(R)-(-)-Parvifoline benzoate [2].-A solution of P. alamani var. oolepis extract (5 g) obtained as previously described (3) in pyridine (25 ml) was treated with benzoyl chloride (7.5 ml). The reaction mixture was heated on a steam bath for 3 h , poured over ice $-\mathrm{H}_{2} \mathrm{O}$, and extracted with EtOAc. The organic layer was washed with diluted $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, aqueous NaHCO_{3}, and $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The oily residue was chromatographed on Si gel (110 g). Elution with hexane gave a solid compound. Recrystallization of this solid from $\mathrm{CHCl}_{3} /$ hexane yielded $2(5.2 \mathrm{~g})$ as white needles, $\mathrm{mp} 106-$ 108°. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ provided the pure compound: mp $110-111^{\circ}$; ir \boldsymbol{v} max 1731 (C=O) $1602 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{C}\right.$ aromatic); $[\alpha] \mathrm{D}-110.20^{\circ}(c=1)$; uv $\lambda \max$ (cyclohexane) 274 ($\log \in 3.47$), 227 $\mathrm{nm}(\log \in 4.30) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 8.28\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right), 7.13\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}\right.$, and H-5'), $7.08(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 6.84(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 5.40\left(1 \mathrm{H}, \mathrm{t}, J_{1 \mathrm{l} \mathrm{\alpha} .12}=J_{11 \mathrm{~B} .12}=8.0 \mathrm{~Hz}, \mathrm{H}-12\right), 3.43$ $\left(1 \mathrm{H}, \mathrm{d}, J_{14,14^{\prime}}=18.0 \mathrm{~Hz}, \mathrm{H}-14\right), 3.17\left(1 \mathrm{H}, \mathrm{ddq}, J_{8,9}=7.0, J_{8,10 \alpha}=4.5, J_{8,10 \beta}=12 \mathrm{~Hz}, \mathrm{H}-8\right), 2.93$ $\left(1 \mathrm{H}, \mathrm{d}, J_{14,14^{\prime}}=18.0 \mathrm{~Hz}, \mathrm{H}-14^{\prime}\right), 2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-7), 1.89(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \beta), 1.68$ (1 H , dddd, $\left.J_{8,10 \alpha}=4.5, J_{10 \alpha, 10 \beta}=12.5, J_{10 \alpha, 11 \alpha}=3.5, J_{10 \alpha, 11 \beta}=12.5 \mathrm{~Hz}, \mathrm{H}-10 \alpha\right), 1.68(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-15), 1.56$

[^1]Table 5. Crystal Data of Parvifoline Benzoate [2], Isoparvifoline Benzoate [5]; 13,14-Epoxyisoparvifoline p-nitrobenzoate [8], and 14-Oxodihydroparvifoline [9].

Parameters and Refinement	Compound			
	3	5	8	9
Crystal Parameters				
Chemical formula	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{~N}$	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$
Molecular weight	320.4	320.4	381.4	232.3
Crystal system	orthorhombic	orthorhombic	monoclinic	monoclinic
Space group .	P2, $\mathbf{2}_{1} \mathrm{I}_{1}$	$\mathrm{P} 2_{1} 2_{1} 2_{1}$	$\mathrm{P} 2_{1}$	
Crystal size, mm	$0.4 \times 0.2 \times 0.06$	$0.21 \times 0.12 \times 0.10$	$0.40 \times 0.24 \times 0.12$	$0.16 \times 0.16 \times 0.10$
Crystal color . .	white	white	white	white
Cell constants $\text { a, } \AA$	7.970 (4)	7.348 (4)	8.265 (3)	$5.092(2)$
b, \AA. . .	12.467 (5)	10.980 (5)	20.478 (6)	14.602 (6)
c, \AA	18.970 (9)	22.924 (10)	12.034 (5)	9.005 (3)
β, deg . . .	90.00 (0)	90.00 (0)	$90.989(29)$	95.329 (26)
Cell volume, \AA^{3}	1884.8(1.5)	1849.6(2.0)	2036.5(1.2)	666.6(4)
ρ (calcd), g/cm	1.13	1.15	1.24	1.16
Z	4	4	4	2
$F(000), e^{-}$	688	688	808	252
Data Collection Paramerers				
$\mu, \mathrm{cm}^{-1} \ldots . . .$.	5.6	5.7	7.3	6.0
Scan width, below $K_{\alpha 1}$, above $\mathrm{K}_{\alpha_{2}}$, deg	0.9, 1.1	1.0, 1.4	1.0, 1.0	1.0,1.1
$2 \boldsymbol{\theta}$ limits, deg	3-110	3-110	3-110	3-110
Scan speed, deg min ${ }^{-1}$	variable, 4-29	variable, 4-29	variable, 4-29	variable, 4-29
Exposure time, h . . .	28.6	26.0	55.5	19.4
Reflections collecred	1418	1395	2891	1009
Observed reflections	1212	1346	2454	845
Structure Refinement				
Reflections for final refinement	1210	1327	2450	839
Parameters refined	233	233	533	169
$\mathrm{R}(\mathbf{F})$, \%	4.38	6.38	6.61	3.34
$\mathrm{R}_{\mathbf{w}}(\mathrm{F}), \%$	4.99	7.46	8.12	3.87
Goodness of fit for the last cycle	1.186	1.117	1.101	1.093
Final G . . .	0.00163	0.00822	0.00827	0.00152
$\Delta_{e}\left(\mathrm{e} / \AA^{3}\right)$.	+0.18, -0.13	$+0.61,-0.22$	$+0.65,-0.22$	+0.12, -0.09

$(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \alpha), 1.20\left(3 \mathrm{H}, \mathrm{d}, J_{8,9}=7.0 \mathrm{~Hz}, \mathrm{Me}-9\right)$, and $1.08 \mathrm{ppm}\left(1 \mathrm{H}, \mathrm{ddt}, J_{8,10}=12.0\right.$, $\left.J_{10 \alpha, 10 \beta}=12.5, J_{10 \beta, 11 \alpha}=J_{10 \beta, 11 \beta}=3.5 \mathrm{~Hz}, \mathrm{H}-10 \beta\right)$. When H-12 was irradiated, H-11 β was observed as a broad dd $\left(J_{10 \alpha, 11 \beta}=12.0, J_{11 \alpha, 11 \beta}=13.0 \mathrm{~Hz}\right)$ and $\mathrm{H}-11 \alpha$ was observed as a dt $\left(J_{10 \alpha, 11}=J_{10 \beta, 11}=3.5, J_{11 \alpha, 11 \beta}=13.0 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ see Table $1 ;{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right)$ heteronuclear chemical shift correlation [75.4 (300 MHz), $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right] \delta 42.2(3.43$ and 2.93), 40.3 (1.68 and 1.08), 33.5 (3.17), 26.5 (1.68), 24.1 (1.89 and 1.56), 19.3 (1.20), 15.9 (2.12). Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2}$: C 82.50 , H 7.50 , O 10.00 ; found $\mathrm{C} 82.38, \mathrm{H} 7.44, \mathrm{O} 10.01 \%$. The X-ray analysis sample was obtained by recrystallization from $\mathrm{CHCl}_{3} /$ hexane.
(R)-(-)-Parvifoline p-Nitrobenzoate [3].-A solution of P. alamani var. oolepis extract (1 g) obtained as previously described (3) in pyridine (5 ml) was treated with p-nitrobenzoyl chloride (2.6 g). The reaction mixture was refluxed during 30 min and worked up as for 2 . The residue was chromatographed on Si gel (25 g). Elution with petroleum ether- $\mathrm{EtOAc}(98: 2)$ gave $3(1 \mathrm{~g})$ as a solid, $\mathrm{mp} 96-97^{\circ}$. The pure sample was obtained by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ as white prisms: mp 98-99 ${ }^{\circ}$; ir $1739(\mathrm{C}=\mathrm{O}), 1609\left(\mathrm{C}=\mathrm{C}\right.$, aromatic), 1531 and $1350 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right) ;[\alpha] \mathrm{D}-111.00^{\circ}(c=1)$; uv λ max (cyclohexane) $256(\log \in 4.04), 213 \mathrm{~nm}(\log \in 4.03) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}, \mathrm{H}-\right.$ $3^{\prime}, \mathrm{H}-5^{\prime}$, and H-6'), $7.05(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 6.88(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 5.37(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-12), 3.60(1 \mathrm{H}, \mathrm{d}$, $\left.J_{14,14^{\prime}}=18.0 \mathrm{~Hz}, \mathrm{H}-14\right), 3.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 3.10\left(1 \mathrm{H}, \mathrm{d}, J_{14,14^{\prime}}=18.0 \mathrm{~Hz}, \mathrm{H}-14^{\prime}\right), 2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-$ 7), $1.78(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-15)$, and $1.35 \mathrm{ppm}\left(3 \mathrm{H}, \mathrm{d}, J_{8.9}=7.0 \mathrm{~Hz}, \mathrm{Me}-9\right.$) [the remaining four protons ($\mathrm{H}-$ $10 \alpha, \mathrm{H}-10 \beta, \mathrm{H}-11 \alpha$, and $\mathrm{H}-11 \beta$) overlap in the $\delta 1.9-0.8$ region\}; ${ }^{13} \mathrm{C}$ nmr ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see Table 1. Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~N}$: C $72.33, \mathrm{H} 6.30, \mathrm{O} 17.53, \mathrm{~N} 3.84$; found $\mathrm{C} 72.38, \mathrm{H} 6.25, \mathrm{O}$ $17.44, \mathrm{~N} 3.89 \%$.
(R)-(-)-Parvifoline acetate [4].-Obtained as described by Joseph-Nathan et al. (2). ${ }^{1} \mathrm{H}$ nmr $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 6.98(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 6.81(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 5.36\left(1 \mathrm{H}, \mathrm{t}, J_{11 \alpha, 12}=J_{11 \beta, 12}=8.0 \mathrm{~Hz}, \mathrm{H}-\right.$

Table 7. Experimentally Refined Final Fractional Atomic
Coordinates ($\times 10^{4}$) of Isoparvifoline Benzoate [5]. ${ }^{2}$

Atom	x	y	z
C-1	7999(5)	2779(3)	8845 (1)
C-2	8620(4)	3824(3)	9108(1)
C-3	10204(4)	3747(3)	9456(1)
C-4	11039(5)	2622(3)	9522(1)
C-5	10414(5)	1542(3)	9252(1)
C-6	8884(5)	1654(3)	8915(1)
C-7	11362(7)	337(3)	9348(2)
C-8	7635(5)	5024(3)	$9021(2)$
C-9	5565(5)	4900(4)	8922(2)
C-10	8475(5)	$5687(3)$	8496(2)
C-11	10558(5)	5914(4)	8543(1)
C-12	11098(5)	6596(3)	9089(2)
C-13	11233(4)	5948(3)	9667(1)
C-14	10942(5)	$4775(3)$	9797(1)
C-15	11932(6)	6795(4)	10149(2)
C-16	8613(5)	112(4)	8208(2)
C-17	7324(6)	-827(3)	7967(1)
C-18	8020(7)	- 1577(4)	7519(2)
C-19	6850(9)	-2484(4)	7267(2)
C-20	5101(11)	-2571(4)	$7491(2)$
C-21	$4501(7)$	-1810(4)	7924(2)
C-22	5606(7)	-974(4)	$8151(2)$
O-6	7982(4)	626(2)	8681(1)
O-16	10093(6)	369(4)	8000 (1)

[^2]$12), 3.42\left(1 \mathrm{H}, \mathrm{d}, J_{14,14^{\prime}}=18.0 \mathrm{~Hz}, \mathrm{H}-14\right), 3.15\left(1 \mathrm{H}, \mathrm{ddq}, J_{8,9}=7.0, J_{8,10 \alpha}=4.0, J_{8.10 \beta}=12.0 \mathrm{~Hz}\right.$, $\mathrm{H}-8), 2.93\left(1 \mathrm{H}, \mathrm{d}, J_{14.14^{\prime}}=18.0 \mathrm{~Hz}, \mathrm{H}-14^{\prime}\right), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-7), 1.85(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \beta), 1.68(1 \mathrm{H}$, dddd, $\left.J_{8,10 \alpha}=4.0, J_{10 \alpha, 10 \beta}=12.0, J_{10 \alpha, 11 \alpha}=3.0, J_{10 \alpha, 11 \beta}=12.0 \mathrm{~Hz}, \mathrm{H}-10 \alpha\right), 1.67(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-15)$, $1.54\left(1 \mathrm{H}\right.$, dddd, $\left.J_{10 \alpha, 11 \alpha}=J_{10 \beta, 11 \alpha}=3.5, J_{11 \alpha, 11 \beta}=13.0, J_{11 \alpha, 12}=8.0 \mathrm{~Hz}, \mathrm{H}-11 \alpha\right), 1.22(3 \mathrm{H}, \mathrm{d}$, $\left.J_{8,9}=7.0 \mathrm{~Hz}, \mathrm{Me}-9\right)$, and $1.07 \mathrm{ppm}\left(1 \mathrm{H}, \mathrm{ddt}, J_{8,10 \beta}=12.0, J_{10 \alpha, 10 \beta}=12.5, J_{10 \beta, 11 \alpha}=J_{10 \beta, 11 \beta}=3.5\right.$ $\mathrm{Hz}, \mathrm{H}-10 \beta$).
(R)-(+)-ISOPARVIFOLINE BENZOATE [5].-A solution of parvifoline benzoate [2] (5 g) in 25 ml of HOAc was treated with anhydrous $\mathrm{ZnCl}_{2}(125 \mathrm{mg})$ and refluxed for 30 min . The reaction mixture was poured over ice- $\mathrm{H}_{2} \mathrm{O}$ and extracted with ErOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, aqueous NaHCO 3 , and $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under vacuum. The colorless oily residue was chromatographed on Si gel (100 g). Elution with hexane provided isoparvifoline benzoate [5] ($4.69 \mathrm{~g}, 94 \%$) as a solid compound, $\mathrm{mp} 82.5-84.5^{\circ}$. Recrystallization from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ gave the pure compound as white prisms: $\mathrm{mp} 83-84^{\circ}$; if $\nu \max 1735(\mathrm{C}=\mathrm{O}), 1605 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{C}$, aromatic); $[\alpha]_{D}+321.00^{\circ}(c=1)$; uv $\lambda \max$ (cyclohexane) $238(\log \in 4.45), 230(\log \in 4.47), 223 \mathrm{~nm}(\log \in 4.47) ;$ ${ }^{1} \mathrm{H} \mathrm{nmr}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 8.28\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathbf{2}^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right), 7.11\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}\right.$, and $\left.\mathrm{H}-5^{\prime}\right), 6.95$ ($2 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}-1$ and $\mathrm{H}-4$), $6.22(1 \mathrm{H}$, br s, $\mathrm{H}-14), 3.10\left(1 \mathrm{H}, \mathrm{ddq}, J_{8,9}=7.0, J_{8,10 \alpha}=3.0, J_{8,10 \beta}=11 \mathrm{~Hz}\right.$, $\mathrm{H}-8), 2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-7), 2.00\left(1 \mathrm{H}, \mathrm{ddd}, J_{11 \alpha, 12 \beta}=8.5, J_{11 \beta, 12 \beta}-0.0, J_{12 \alpha, 12 \beta}=17.0 \mathrm{~Hz}, \mathrm{H}-12 \beta\right)$, $1.82\left(1 \mathrm{H}\right.$, ddd, $\left.J_{11 \alpha, 12 \alpha}-0.0, J_{11 \beta, 12 \alpha}=11.0, J_{12 \alpha, 12 \beta}=17 \mathrm{~Hz}, \mathrm{H}-12 \alpha\right), 1.74\left(3 \mathrm{H}, \mathrm{d}, J_{14,15}=1.0\right.$ $\mathrm{Hz}, \mathrm{Me}-15), 1.57(2 \mathrm{H}, 2 \mathrm{~m}, \mathrm{H}-10 \alpha$ and $\mathrm{H}-11 \beta$), $1.24(2 \mathrm{H}, 2 \mathrm{~m}, \mathrm{H}-10 \beta$ and $\mathrm{H}-11 \alpha$), and $1.16 \mathrm{ppm}(3 \mathrm{H}$, $\left.\mathrm{d}, J_{8.9}=7.0 \mathrm{~Hz}, \mathrm{Me}-9\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ see Table $1 ;{ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ heteronuclear chemical shift correlation [75.4 (300 MHz), $\mathrm{C}_{6} \mathrm{D}_{6}$] $\delta 39.6$ (1.57 and 1.24), 35.7 (2.00 and 1.82), 34.0 (3.10), 26.5 (1.74), 22.7 (1.57 and 1.24), 21.5 (1.16), 15.9 (2.12). Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2}: \mathrm{C} 82.50, \mathrm{H} 7.50, \mathrm{O}$ 10.00 ; found $\mathrm{C} 82.62, \mathrm{H} 7.60$, O 10.04%. The X-ray analysis sample was obtained by recrystallization from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$.
(R)-(+)-ISOPARVIFOLINE p-NITROBENZOATE [6].-A solution of parvifoline p-nitrobenzoate [3] (1 g) in $\mathrm{HOAc}\left(5 \mathrm{ml}\right.$) was treated with anhydrous ZnCl_{2} (25 mg), refluxed for 30 min , and worked up as in the case of 5 . The oily green residue was chromatographed on Si gel (25 g). Elution with hexane-ErOAc

Table 6. Experimentally Refined Final Fractional Atomic Coordinates ($\times 10^{4}$) of Parvifoline Benzoate [2]. ${ }^{2}$

Atom	x	y	z
C-1	-2046(4)	8445(3)	6877(2)
C-2	-3587(4)	8650(3)	6545(2)
C-3	-4368(4)	9641(3)	6668(2)
C-4	-3557(5)	10400(3)	7092(2)
C-5	-2025(4)	10190(3)	7426(2)
C-6	-1325(4)	9204(3)	7312(2)
C-7	-1195(6)	11059(4)	7880(2)
C-8	-4327(5)	7863(3)	6014(2)
C-9	-4014(7)	6671(3)	6197(3)
C-10	-3578(6)	8135(4)	5284(2)
C-11	-3732(5)	9329(4)	5084(2)
C-12	-5523(5)	9726(3)	5073(2)
C-13	-6508(5)	9944(3)	5610(2)
C-14	-6120(4)	9907(3)	6399(2)
C-15	-8347(5)	10276(4)	5493(2)
C-16	229(4)	8439(3)	8253(2)
C-17	1931(4)	8232(3)	8530(2)
C-18	3360(4)	8694(3)	8238(2)
C-19	4913(4)	8461(4)	8512(2)
C-20	5058(4)	7768(3)	9083(2)
C-21	3650(5)	7314(3)	9383(2)
C-22	2075(4)	7539(3)	9110(2)
O-6	246(3)	8967(2)	7626(1)
O-16	-1053(3)	8195(3)	8535(2)

[^3](98:2) provided a solid compound that was recrystallized from petroleum ether yielding isoparvifoline p nitrobenzoate [6] ($900 \mathrm{mg}, 90 \%$) as yellow prisms: $\mathrm{mp} 84-86^{\circ}$; ir $v \max 1740(\mathrm{C}=0), 1610(\mathrm{C}=\mathrm{C}$, aromatic), 1530 and $1350 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right) ;[\alpha] \mathrm{D}+284.80^{\circ}{ }_{(c}=0.42$); uv $\lambda \max$ (cyclohexane) 253 nm ($\log \epsilon$ 4.20), $215 \mathrm{~nm}(\log \in 4.16) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42\left(4 \mathrm{H}, 4 \mathrm{~s}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right.$, and $\left.\mathrm{H}-6^{\prime}\right)$, $7.03(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 7.00(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 6.23(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-14), 3.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 2.16(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-7)$, $1.88(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-15), 1.26 \mathrm{ppm}\left(3 \mathrm{H}, \mathrm{d}, J_{8,9}=7 \mathrm{~Hz}, \mathrm{Me}-9\right)$ [the remaining six protons ($\mathrm{H}-10 \alpha, \mathrm{H}-10 \beta$, $\mathrm{H}-11 \alpha, \mathrm{H}-11 \beta, \mathrm{H}-12 \alpha$, and $\mathrm{H}-12 \beta$) overlap in the $1.1-2.3$ region]; ${ }^{13} \mathrm{C} \mathrm{nmr}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) see Table 1.
($8 R, 13 S, 14 R$)-(+)-13,14-EPOXYISOPARVIFOLINE BENZOATE [7].-A solution of isoparvifoline benzoate $[5](4.5 \mathrm{~g})$ and m-chloroperbenzoic acid (4.38 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{ml})$ was refluxed for 2 h , poured over ice- $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with aqueous $\mathrm{NaHCO}{ }_{3}$ and $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under vacuum. The oily residue was chromatographed on Si gel $(90 \mathrm{~g})$. Elution with hexane $-\mathrm{C}_{6} \mathrm{H}_{6}(8: 2)$ gave compound $7(3.07 \mathrm{~g}, 65 \%)$ as a colorless oil: ir $v \max 1731(\mathrm{C}=\mathrm{O}), 900 \mathrm{~cm}^{-1}$ (epoxide); $[\alpha] \mathrm{D}+34.34^{\circ}(c=5.30)$; uv λ max (cyclohexane) $271(\log \in 3.34), 227(\log \in 4.19), 208 \mathrm{~nm}(\log \in 3.92)$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30\left(2 \mathrm{H}, 2 \mathrm{~m}, \mathrm{H}-2^{\prime}\right.$ and H-6'), $7.60\left(3 \mathrm{H}, 3 \mathrm{~m}, \mathrm{H}-3^{\prime}, \mathrm{H}^{\prime} 4^{\prime}\right.$, and $\left.\mathrm{H}-5^{\prime}\right), 7.35(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 7.04(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 3.78(1 \mathrm{H}, \mathrm{br}$, $\mathrm{H}-14), 3.04(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-7), 1.53(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-15), 1.30\left(3 \mathrm{H}, \mathrm{d}, J_{8,9}=7 \mathrm{~Hz}, \mathrm{Me}-9\right)$ [the remaining six protons ($\mathrm{H}-10 \alpha, \mathrm{H}-10 \beta, \mathrm{H}-11 \alpha, \mathrm{H}-11 \beta, \mathrm{H}-12 \alpha$, and $\mathrm{H}-12 \beta$) overlap in the $\delta 1.0-$ 2.0 region]; ${ }^{13} \mathrm{C} \mathrm{nmr}\left(25.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) see Table 1.
($8 R, 13 S, 14 R$)-(+)-13, 14-Epoxyisoparvifoline p-Nitrobenzoate $[8]$.-A solution of isoparvifoline p-nitrobenzoate [6] (0.9 g) in $\mathrm{CHCl}_{3}(30 \mathrm{ml})$ was refluxed with m-chloroperbenzoic acid (0.75 g) for 2 h , treated with aqueous NaHCO_{3}, and extracted with CHCl_{3}. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under vacuum. The residue was chromatographed on Si gel (20 g). Elution with hexane-ErOAc (9:1) gave compound $8(0.65 \mathrm{~g}, 69 \%)$ as slightly green prisms, $\mathrm{mp} 123-125^{\circ}$. Recrystallization from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}$ provided the pure compound 8 as white prisms: $\mathrm{mp} 125^{\circ}$; ir $\nu \max 1740(\mathrm{C}=\mathrm{O}), 1530$ and $1350 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right) ;[\alpha] \mathrm{D}+29.72^{\circ}(r=0.74)$; uv λ max

Table 8. Experimentally Refined Final Fractional Atomic Coordinates ($\times 10^{4}$) of 13,14-Epoxyisoparvifoline p-nitrobenzoate [8]. ${ }^{2}$

Atom	x	y	z
C-1	-90(7)	2600	4925(4)
C-2	- 1486(6)	2914(2)	5252(4)
C-3	-2655(6)	2547(3)	5813(4)
C-4	-2376(6)	1895(2)	6082(4)
C-5	-961(6)	1564(2)	5755(4)
C-6	129(6)	1936(3)	5162(4)
C-7	-708(7)	850(3)	6019(5)
C-8	-1701(7)	3645(3)	5033(5)
C-9	-889(9)	3859(4)	3961(6)
C-10	-1041(9)	4049(3)	5999(6)
C-11	-2115(15)	4109(7)	$7011(8)$
C-12	-3041(2)	3648(8)	$7477(8)$
C-13	-4525(9)	3379(3)	6866(5)
C-14	-4254(6)	2829(3)	6138(4)
C-15	-6076(13)	3749(5)	6755(10)
C-16	1576(6)	1437(3)	3717(4)
C-17	3172(6)	1154(2)	3381(4)
C-18	3341 (7)	998(3)	2281(5)
C-19	$4819(8)$	745(3)	1914(5)
C-20	6035(7)	657(3)	2667(5)
C-21	5904(7)	817(3)	3770(5)
C-22	4447(7)	1072(3)	4139(4)
N-20	7579(7)	376(3)	2282(5)
O-6	1573(4)	1630(2)	4781 (3)
O-13	-4772(6)	2725(3)	7256(4)
O-16	419(5)	1485(3)	3127(4)
O-20a	8544(7)	183(4)	3011(6)
O-20b	$7803(7)$	345(4)	1303(5)
C-31	9078(8)	5649(3)	625(5)
C-32	8018(7)	5313(3)	1343(4)
C-33	7195(6)	5676(3)	$2136(4)$
C-34	7419(6)	6348(3)	2208(5)
C-35	8505(7)	6682(3)	1535(5)
C-36	$9296(7)$	6304(3)	761(5)
C-37	8766(8)	7411(3)	1700(7)
C-38	7733(8)	4580(3)	1190(4)
C-39	9304(10)	4211(4)	854(6)
C-40	6318(10)	4448(3)	363(5)
C-41	4626(11)	4430(5)	783(7)
C-42	4080(9)	5010(4)	1432(8)
C-43	4620(7)	5018(3)	2684(6)
C-44	6143(6)	5343(3)	2961(4)
C-45	4005(11)	4493(4)	3439(10)
C-46	11720(11)	6685(4)	418(5)
C-47	12929(11)	7046(3)	-446(5)
C-48	12460(8)	7157(3)	-1556(7)
C-49	13673(8)	$7431(3)$	-2291(5)
C-50	15164(7)	7548(3)	-1824(4)
C-51	15515(9)	7453(4)	-746(5)
C-52	14444(9)	7201(4)	-37(6)
N-50	16491(9)	7802(3)	-2578(6)
O-36	10372(6)	6640(3)	-37(4)
O-43	4616(4)	5663(2)	3182(3)
O-46	12247(7)	6519(4)	1248(4)
O-50a	17711(8)	7979(5)	-2187(7)
O-50b	16149(11)	7830(3)	-3552(5)

[^4]Table 9. Experimentally Refined Final Fractional Atomic
Coordinates ($\times 10^{4}$) of 14-Oxodihydroparvifoline [9]. ${ }^{2}$

Atom	x	y	z
C-1	253(5)	7790 (0)	5211(3)
C-2	-857(5)	7238(2)	6260(3)
C-3	-244(5)	6287(2)	6250(3)
C-4	1561(5)	5973(2)	5276(3)
C-5	2737(5)	6529(2)	4271 (3)
C-6	1963(5)	7445(2)	$4231(3)$
C-7	4696(5)	6172(2)	3263(3)
C-8	-2614(5)	$7691(2)$	7337(3)
C-9	-3565(7)	8662(2)	6879(4)
C-10	-1193(6)	7763 (3)	8941(3)
C-11	372(7)	6944(3)	9556(3)
C-12	- 1260(7)	6097(3)	9784(3)
C-13	-2987(6)	5685(2)	8447(3)
C-14	-1434(5)	5534(2)	7113(3)
C-15	-4333(8)	4803(3)	8898(4)
0-6	2997(5)	7988(3)	3191(2)
O-14	-1125(5)	4746(3)	6695(3)
H-6	2190(69)	8585(32)	3127(37)

${ }^{2}$ Estimated standard deviations in the least significant digits are shown in parentheses.
(cyclohexane) $255(\log \in 3.77), 215 \mathrm{~nm}(\log \in 3.71) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(2 \mathrm{H}, 2 \mathrm{~m}$, $J_{\text {orrho }}=9.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$ and H-5'), $8.34\left(2 \mathrm{H}, 2 \mathrm{~m}, J_{\text {ortho }}=9.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and $\mathrm{H}-6^{\prime}$), $7.32(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-4)$, $7.05(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 3.80(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-14), 3.05\left(1 \mathrm{H}, \mathrm{ddq}, J_{8,9}=7.0, J_{8,10 \alpha}=1.0, J_{8,10 \beta}=10 \mathrm{~Hz}, \mathrm{H}-8\right)$, $2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-7), 1.88\left(1 \mathrm{H}\right.$, ddd $\left., J_{11 \alpha, 12 \alpha}=2.0, J_{11 \beta, 12 \alpha}=6.0, J_{12 \alpha, 12 \beta}=14 \mathrm{~Hz}, \mathrm{H}-12 \alpha\right), 1.80(1 \mathrm{H}$, $\left.\mathrm{ddt}, J_{8,10 \alpha}=1.0, J_{10 \alpha, 10 \beta}=13, J_{10 \alpha, 11 \alpha}=J_{10 \alpha, 11 \beta}=4 \mathrm{~Hz}, \mathrm{H}-10 \alpha\right), 1.62(2 \mathrm{H}, 2 \mathrm{~m}, \mathrm{H}-11 \alpha$ and H $11 \beta), 1.56(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-15), 1.36\left(1 \mathrm{H}\right.$, dddd, $J_{8,10 \beta}=10, J_{10 \alpha, 10 \beta}=13, J_{10 \beta, 11 \alpha}=1, J_{10 \beta, 11 \beta}=6 \mathrm{~Hz}$, $\mathrm{H}-10 \beta), 1.35\left(3 \mathrm{H}, \mathrm{d}, J_{8.9}=7.0 \mathrm{~Hz}, \mathrm{Me}-9\right)$, and $1.19 \mathrm{ppm}\left(1 \mathrm{H}, \mathrm{ddd}, J_{11 \alpha, 12 \beta}=11.5, J_{11 \beta, 12 \beta}=2.5\right.$, $J_{12 \alpha, 12 \beta}=13.5 \mathrm{~Hz}, \mathrm{H}-12 \beta$); ${ }^{13} \mathrm{C} \operatorname{nmr}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ see Table $1 ;{ }^{13} \mathrm{C}^{-1} \mathrm{H}$ heteronuclear chemical shift correlation $\left\{75.4(300 \mathrm{MHz}), \mathrm{CDCl}_{3}\right] \delta 63.0(3.80), 40.8(1.80$ and 1.36$), 34.4(3.05), 33.1(1.88$ and 1.19), 24.0 (1.62), 22.1 (1.56), 22.0 (1.35), 15.7 (2.20). Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{~N}: \mathrm{C} 69.30, \mathrm{H}$ $6.04, \mathrm{O} 20.99, \mathrm{~N} 3.67$; found C $69.42, \mathrm{H} 6.18, \mathrm{O} 20.83$, N 3.62%. The X-ray analysis sample was obtained by recrystallization from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}$.
($8 R, 13 S$)-(+)-14-OXODIHYDROPARVIFOLINE [9].-A solution of epoxyisoparvifoline benzoate [7] (4.5 g) in anhydrous $\mathrm{C}_{6} \mathrm{H}_{6}(225 \mathrm{ml})$ was treated with $\mathrm{Et}_{2} \mathrm{O} / \mathrm{BF}_{3}(4.5 \mathrm{ml})$, stirred at room temperature for 12 h , treated portionwise with $\mathrm{H}_{2} \mathrm{O}$, and extracted with EtOAc. The organic layer was washed with aqueous NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under vacuum. The residue was chromatographed on Si gel (100 g). Elution with hexane- $\mathrm{C}_{6} \mathrm{H}_{6}(8: 2)$ yielded a yellow oily substance ($1.56 \mathrm{~g}, 35 \%$) that was dissolved in $\mathrm{MeOH}(100 \mathrm{ml})$ and treated with a solution of $\mathrm{KOH}(0.5 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$. The reaction mixture was refluxed for 30 min , concentrated to a small volume, diluted with $\mathrm{H}_{2} \mathrm{O}$, and extracted with EtOAc. The organic layer was washed with diluted HCl and $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under vacuum. The residue was chromatographed on Si gel (60 g). Elution with hexane-ErOAc ($9: 1$) gave compound $9(660 \mathrm{mg}, 61 \%$) as white needles, mp 133$134^{\circ}$. Recrystallization from $\mathrm{CHCl}_{3} /$ hexane provided the pure sample: mp $136-137^{\circ}$; it ν max 3599 and $3322(\mathrm{OH}), 1651 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;[\alpha] \mathrm{D}+37.03(c=0.54)$; uv $\lambda \max$ (dioxane) 273 ($\log \in 3.73$), 235 nm $(\log \in 3.29) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 6.72(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 5.75(1 \mathrm{H}$, br s, which disappears upon addition of $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}\right), 3.32\left(1 \mathrm{H}, \mathrm{ddq}, J_{8,9}=7.0, J_{8,10 \alpha}=4.5, J_{8,10 \beta}=11 \mathrm{~Hz}, \mathrm{H}-8\right)$, $3.13\left(1 \mathrm{H}, \mathrm{ddq}, J_{12 \alpha, 13}=6, J_{12 \beta, 13}=9.5, J_{13,15}=6.5 \mathrm{~Hz}, \mathrm{H}-13\right), 2.22(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-7), 1.80(2 \mathrm{H}, 2 \mathrm{~m}$, $\mathrm{H}-12 \alpha$ and $\mathrm{H}-10 \alpha$), 1.39 (ddt, $J_{8,10 \beta}=11, J_{10 \alpha, 10 \beta}=18, J_{10 \beta, 11 \alpha}=J_{10 \beta, 11 \beta}=4 \mathrm{~Hz}, \mathrm{H}-10 \beta$), 1.27 $\left(3 \mathrm{H}, \mathrm{d}, J_{8,9}=7.0 \mathrm{~Hz}, \mathrm{Me}-9\right), 1.20 \mathrm{ppm}\left(3 \mathrm{H}, \mathrm{d}, J_{13,15}=6.5 \mathrm{~Hz}, \mathrm{Me}-15\right)$ [che remaining three protons ($\mathrm{H}-11 \alpha, \mathrm{H}-11 \beta$, and $\mathrm{H}-12 \beta$) overlap in the $\delta 1.59-1.40$ region $]$; addition of $\mathrm{Eu}(\mathrm{fod})_{3}(5 \mathrm{mg})$ to a solution of $9(10 \mathrm{mg})$ in $\mathrm{CDCl}_{3}(0.6 \mathrm{ml})$ allowed observation of $\mathrm{H}-12 \alpha$ at $\delta 1.96\left(1 \mathrm{H}\right.$, dddd, $J_{11 \alpha, 12 \alpha}=2.0$, $J_{11 \beta, 12 \alpha}=11.0, J_{12 \alpha, 12 \beta}=17.0, J_{12 \alpha, 13}=6.0 \mathrm{~Hz}$) and $\mathrm{H}-10 \alpha$ at 1.87 ppm (dddd, $J_{8,10}=4.5$, $\left.J_{10 \alpha, 10 \beta}=18.0, J_{10 \alpha, 11 \alpha}=4.0, J_{10 \alpha, 11 \beta}=10.0 \mathrm{~Hz}\right)$. NOe experiment: a solution of $9(5 \mathrm{mg})$ in CDCl_{3}
(1.2 ml) placed in an nmr sample tube was bubbled with Ar during 1 h at room temperature. The tube was sealed. The irradiation of $\mathrm{H}-13$ increased $11 \% \mathrm{H}-8$ integration. ${ }^{13} \mathrm{C} \mathrm{nmr}\left(25.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) see Table 1; ${ }^{13} \mathrm{C}$ - ${ }^{1} \mathrm{H}$ heteronuclear chemical shift correlation $\left[75.4(300 \mathrm{MHz}), \mathrm{CDCl}_{3}\right] \delta 46.4$ (3.13), 36.1 (3.32), 35.7 (1.80 and 1.39), 32.4 (1.80 and 1.50), 23.5 (1.50), 22.9 (1.27), 17.0 (1.20), 15.3 (2.22). Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$: C 77.59, H 8.62, O 13.79; found $\mathrm{C} 77.51, \mathrm{H} 8.67, \mathrm{O} 13.62 \%$. The X -ray analysis sample was obtained by recrystallization from $\mathrm{CHCl}_{3} /$ hexane.
(R)-(-)-6-(5-BENZOYLOXY-2-FORMYL-4-METHYLPHENYL)-HEPTAN-2-ONE [10].-A solution of $7(4.5 \mathrm{~g})$ in $\mathrm{Et}_{2} \mathrm{O}-\mathrm{Me}_{2} \mathrm{CO}(1: 1)$ was treated with a solution of $\mathrm{HIO}_{4}(6.12 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{ml})$, stirred for 1 h at room temperature, poured over ice- $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with aqueous NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under vacuum. The oily residue was chromatographed on Si gel (100 g). Elution with hexane- $\mathrm{EtOAc}(8: 2)$ yielded 6 (2.9 g , 62%) as a slightly green oil: ir $v \max 2734\left(\mathrm{C}-\mathrm{H}\right.$, aldehyde), $1737\left(\mathrm{C}=\mathrm{O}\right.$, benzoate), $1705 \mathrm{~cm}^{-1}(\mathrm{C}=0$, aldehyde and ketone); $[\alpha] D-7.23^{\circ}(c=4.08)$; uv $\lambda \max$ (dioxane) $282(\log \in 3.85), 254$ ($\log \in 4.37$), 245 $\mathrm{nm}(\log \in 4.28) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.26(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 8.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{D}^{\prime}\right.$ and $\mathrm{H}-6$ '), 7.66 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6$), $7.51\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}\right.$, and $\left.\mathrm{H}-5^{\prime}\right), 7.16(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 3.68(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 2.34(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-12$ and $\mathrm{H}-12$ '), 2.26 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-7$), 2.03 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-14$), $1.70-1.45$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-10, \mathrm{H}-10^{\prime}, \mathrm{H}-11$, and H-11'), $1.20 \mathrm{ppm}\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}_{8,9}=7 \mathrm{~Hz}, \mathrm{Me}-9\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(25.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ see Table 2.
(R)-(-)-6-(2-FORMYL-5-HYDROXY-4-METHYLPHENYL)-HEPTAN-2-ONE [11].-A solution of 10 $(1.76 \mathrm{~g})$ in $\mathrm{MeOH}(100 \mathrm{ml})$ was treated with a solution of $\mathrm{KOH}(200 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$. The reaction mixture was refluxed for 20 min , neutralized with HCl , concentrated to a small volume, and extracted with EtOAc . The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under vacuum. The residue was chromatographed on Si gel (60 g). Elution with hexane-EtOAc (8:2) yielded $11(1.1 \mathrm{~g}, 89 \%)$ as a yellow oil: ir $\nu \max 3587$ and $3275(\mathrm{OH}), 2729(\mathrm{C}-\mathrm{H}$, aldehyde), 1712 ($\mathrm{C}=\mathrm{O}$, ketone), $1690 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$, aldehyde); [$\left.\alpha\right] \mathrm{D}-13.26^{\circ}(c=1.96$); uv $\lambda \max$ (dioxane) 278 ($\log \in$ 4.02), $237 \mathrm{~nm}(\log \in 3.45) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.18(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 8.37(1 \mathrm{H}$, br s, which disappears upon addition of $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}\right), 7.65(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 6.90(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 3.87(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 2.44$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-12$ and $\mathrm{H}-12^{\prime}$), 2.28 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-7$), 2.15 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-14$), $1.70-1.45$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-10, \mathrm{H}-10^{\prime}$, $\mathrm{H}-11$, and $\mathrm{H}-11^{\prime}$), $1.22 \mathrm{Ppm}\left(3 \mathrm{H}, \mathrm{d}, J_{8.9}=7 \mathrm{~Hz}, \mathrm{Me}-9\right.$); ${ }^{13} \mathrm{C} \mathrm{nmr}\left(25.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ see Table 2.
(R)-(-)-6-(5-METHYL-1,4-BENZOQUINON-2-YL)-HEPTAN-2-ONE [12].-A solution of 11 (0.5 $\mathrm{g})$ in $\mathrm{MeOH}(5 \mathrm{ml})$ was treared with $\mathrm{H}_{2} \mathrm{O}_{2}\left(30 \mathrm{wt} \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)(0.35 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(0.05 \mathrm{ml})$ at room temperature for 1 h , treated with aqueous NaHCO_{3}, and extracted with ErOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under vacuum. The oily residue was dissolved in MeOH (10 ml) and treated with aqueous $\mathrm{FeCl}_{3}(1 \mathrm{ml})$. The reaction mixture was stirred for 1 h, poured over ice $-\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under vacuum. The residue was purified by chromatography on Si gel (30 g). Elution with hexane-EtOAc ($7: 3$) provided compound 12 ($227 \mathrm{mg}, 48 \%$) as a yellow oil: ir $v \max 1710\left(\mathrm{C}=\mathrm{O}\right.$, ketone), $1645 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$, quinone); $[\alpha] \mathrm{D}-16.47^{\circ}(c=1.70)$; uv $\lambda \max$ ($c y$ clohexane) $290(\log \in 2.70), 260(\log \in 4.29), 253 \mathrm{~nm}(\log \in 4.32),{ }^{1} \mathrm{H} \mathrm{nmr}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.53(1 \mathrm{H}$, $\left.\mathrm{q}, J_{6,7}=2 \mathrm{~Hz}, \mathrm{H}-6\right), 6.43(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 2.86(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 2.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-12\right.$ and $\left.\mathrm{H}-12^{\prime}\right), 2.06(3 \mathrm{H}$, s, Me-14), $2.00\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}_{6,7}=2 \mathrm{~Hz}, \mathrm{Me}-7\right), 1.47\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-10, \mathrm{H}-10^{\prime}, \mathrm{H}-11\right.$, and $\left.\mathrm{H}-11^{\prime}\right), 1.12 \mathrm{ppm}$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}_{8,9}=7 \mathrm{~Hz}, \mathrm{Me}-9\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(25.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ see Table 2.
(R)-(-)-6-(2,5-DIACETOXY-4-METHYLPHENYL)-HEPTAN-2-ONE [13].-A solution of quinone $12(150 \mathrm{mg})$ in $\mathrm{Ac}_{2} \mathrm{O}(1.5 \mathrm{ml})$ was treated with $\mathrm{NaOAc}(30 \mathrm{mg})$ and Zn (foil) $(1.5 \mathrm{~g})$, refluxed for 1 h , filtered, poured over ice- $\mathrm{H}_{2} \mathrm{O}$, and extracted with EtOAc. The organic layer was washed with aqueous NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under vacuum. The residue was purified by chromatography on Si gel (10 g). Elution with hexane-EtOAc (8:2) yielded diacetate 13 ($160 \mathrm{mg}, 78 \%$) as a colorless oil: ir $\nu \max 1757\left(\mathrm{C}=\mathrm{O}\right.$, esters), $1712 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$, ketone); $[\alpha] \mathrm{D}-15.00^{\circ}$ ($c=1.00$); uv $\lambda \max$ (cyclohexane) 275 ($\log \in 2.92$), 269 ($\log \in 2.90$), $217 \mathrm{~nm}\left(\log \in 3.80\right.$); ${ }^{1} \mathrm{H} \mathrm{nmr}(90$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.83^{\circ}(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 6.82(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 2.73(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 2.23(6 \mathrm{H}, 2 \mathrm{~s}, 2 \mathrm{Ac}), 2.08$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-7$) , 1.95 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-14$), $1.47\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-10, \mathrm{H}-10^{\prime}, \mathrm{H}-11\right.$, and $\mathrm{H}-11^{\prime}$), 1.14 ($3 \mathrm{H}, \mathrm{d}$, $J_{8,9}=7 \mathrm{~Hz}, \mathrm{Me}-9$) \{the remaining two protons ($\mathrm{H}-12$ and $\mathrm{H}-12^{\prime}$) overlap in the $\delta 2.10-2.40$ region\}; ${ }^{13} \mathrm{C}$ $\mathrm{nmr}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ see Table 2.
(R)-(-)-2-METHYL-6-(5-METHYL-1,4-BENZOQUINON-2-YL)-HEPTAN-2-OL [14].-A solution of diacetare $13(360 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ was added dropwise to an $\mathrm{Er}_{2} \mathrm{O}$ solution of $\mathrm{MeMgI}[0.15 \mathrm{~g}$ of Mg (turnings) and 2 ml of Mel in 20 ml of $\mathrm{Et}_{2} \mathrm{O}$]. The reaction mixture was gently refluxed for 2 h , poured dropwise onto aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under vacuum. The residue was dissolved in MeOH (20 $\mathrm{ml})$ and treated with aqueous $\mathrm{FeCl}_{3}(1 \mathrm{ml})$. The reaction mixture was stirred during 1 h and extracted with
$\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under vacuum. The oily residue was purified by chromatography on Si gel (20 g). Elution with petroleum ether-EtOAc ($7: 3$) yielded compound $14(190 \mathrm{mg}, 68 \%$) as a yellow oil: ir ν max 3603 and $3366(\mathrm{OH})$, $1655 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$, quinone); $[\alpha] \mathrm{D}-3.63^{\circ}(c=1.10)$; uv $\lambda \max$ (dioxane) $258(\log \epsilon 3.79), 294 \mathrm{~nm}(\log \epsilon$ $3.16) ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 6.56\left(1 \mathrm{H}, \mathrm{q}, J_{6,7}=2 \mathrm{~Hz}, \mathrm{H}-6\right), 6.45(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 2.90(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 2.02(3 \mathrm{H}, \mathrm{d}$, $J_{6,7}=2 \mathrm{~Hz}, \mathrm{Me}-7$), $1.15(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{Me}-14$ and $\mathrm{Me}-15), 1.12 \mathrm{ppm}\left(3 \mathrm{H}, \mathrm{d}, J_{8,9}=7 \mathrm{~Hz}, \mathrm{Me}-9\right)$ [the remaining seven protons ($\mathrm{H}-10, \mathrm{H}-10^{\prime}, \mathrm{H}-11, \mathrm{H}-11^{\prime}, \mathrm{H}-12, \mathrm{H}-12^{\prime}$, and OH) overlap in the $\delta 1.65-0.65$ region]; ${ }^{13} \mathrm{C} \mathrm{nmr}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) see Table 2.
(R)-(- -Curcuquinone [15].-A solution of quinone 14 (190 mg) in dry $\mathrm{C}_{6} \mathrm{H}_{6}(52 \mathrm{ml})$ was treated with Si gel (3.7 g) previously activated as described by D'Onofrio and Scettri (9). The reaction mixture was stirred at 35° for 45 min , diluted with petroleum ether (52 ml), cooled, and placed in a chromatographic column. Elution with petroleum ether $-\mathrm{C}_{6} \mathrm{H}_{6}$ (1:1) yielded curcuquinone 15 (70 mg , 40%) as a yellow oil $[\alpha] \mathrm{D}-1.58(c=6.63)$, [lit. (4) $[\alpha] \mathrm{D}-1.30(c=9.1)]$; the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ data are in agreement with those reported by McEnroe and Fenical (4).

ACKNOWLEDGMENTS

Partial financial support from CoNaCyT and from Proyectos Estratégicos, SEP-México is acknowledged.

LITERATURE CITED

1. F. Bohlmann and C. Zdero, Chem. Ber., 110, 468 (1977).
2. P. Joseph-Nathan, J.D. Hernández, L.U. Román, E. García G., and V. Mendoza, Phytochemistry, 21, 669 (1982).
3. P. Joseph-Nathan, J.D. Hernández, L.U. Román, E. García G., V. Mendoza, and S. Mendoza, Pbytocbemistry, 21, 1129 (1982).
4. F.I. McEnroe and W. Fenical, Tetrabedron, 34, 1661 (1978).
5. F. Sánchez-Viesca and J. Romo, Tetrahedron, 19, 1285 (1963).
6. J.B. Lee and B.C. Uff, Q. Rev., Cbem. Soc., 21, 429 (1967).
7. J.P. Nagarkatti and K.R. Ashley, Tetrabedron Lett., 4599 (1973).
8. M. Nikaido, R. Aslanian, F. Scavo, P. Helquist, B. Akermark, and J. Bäckvall, J. Org. Chem., 49, 4740 (1984)
9. F. D'Onofrio and A. Scettri, Synthesis, 1159 (1985).
10. I.H. Sánchez, C. Lemini, and P. Joseph-Nathan, J. Org. Chem., 46, 4666 (1981).
11. C.A.G. Haasnoot, F.A.A.M. de Leeuw, and C. Altona, Tetrabedron, 36, 2783 (1980).
12. F.A.L. Anet and I. Yavari, Tetrabedron Lett., 1567 (1975).
13. F.A.L. Anet and I. Yavari, J. Am. Cbem. Soc., 99, 6986 (1977).
14. G. Favini, C. Rubino, and R. Todeschini, J. Mol. Struct., 41, 305 (1977).
15. P. Joseph-Nathan, R.L. Santillan, P. Schmitt, and H. Günther, Org. Magn. Reson., 22, 450 (1984).
16. P. Crabbé, "Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry," HoldenDay, San Francisco, 1965, pp. 180-190.
17. G.V. Smith and H. Kriloff, J. Am. Chem. Sor., 85, 2016 (1963).

[^0]: ${ }^{\mathrm{a}} \mathrm{In} \mathrm{Ppm}$ from internal $\mathrm{Me}_{4} \mathrm{Si}$. Carbon numbering is according to that of curcuquinone $[\mathbf{1 1}]$. Multiplicities were observed in the coupled spectra.
 ${ }^{\text {b }}$ Acetate signals were distinguished taking into account the data of a series of curcumenes (\mathbf{P}. JosephNathan, R. Tovar-Miranda, E. Martínez, and R.L. Santillan, submitted for publication in J. Nat. Prod.).

[^1]: ${ }^{1}$ Atomic coordinates for these structures have been deposited with the Cambridge Crystallographic Data Centre and can be obtained on request from Dr. Olga Kennard, University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK.

[^2]: ${ }^{\text {a }}$ Estimated standard deviations in the least significant digits are shown in parentheses.

[^3]: ${ }^{2}$ Estimated standard deviations in the least significant digits are shown in parentheses.

[^4]: ${ }^{a}$ Estimated standard deviations in the least significant digits are shown in parentheses.

